Datenhaufen zu IT und Elektronik.

Kategorie: Netzwerke & Protokolle (Seite 1 von 2)

IP-Kameras: Risiken, Portfreigaben (RTSP/HTTP) & Checks

Moin, ich mag noch einmal etwas zu IP-Überwachungskameras schreiben. Ihr erinnert euch vielleicht an meinen letzten Beitrag zu diesem Thema KLICK.

article image of ip cameras

Dort habe ich mich speziell auf den RTSP-Port bezogen und auch https://www.shodan.io/ als Beispiel genannt. Shodan scannt unaufhörlich IPv4-Adressen (bei IPv6 wäre ein flächendeckender Scan kaum praktikabel) und stellt seine Ergebnisse öffentlich zur Verfügung. Sicherheitsforscher — aber leider auch Menschen mit schlechten Absichten — bedienen sich solcher Dienste, um Informationen über Systeme hinter einer IPv4-Adresse zu bekommen, ganz ohne selbst groß zu scannen oder zu testen. Grob gesagt: Google für „Hacker“.

Dass IP-Kameras — vor allem günstige oder ältere Modelle — schnell ein Sicherheitsrisiko darstellen, habe ich schon erwähnt; wer das hier liest, weiß es in der Regel auch. Automatische Portfreigaben in Kombination mit solchen Kameras sind oft problematisch. Wenn ich über so etwas stolpere und ohne großen Aufwand den Betreiber ausfindig machen kann, versuche ich jeweils per E-Mail oder einem kurzen Anruf zu warnen. Das stößt mal auf offene Ohren, manchmal wird es komplett ignoriert (manchmal mit Abschalten des öffentlichen Zugriffs, manchmal ohne); selten kommt die Antwort „Anzeige ist raus“.

Kameras filmen oft sensible Bereiche, sowohl innen als auch außen. Das kann viele Probleme mit sich bringen, wenn diese Informationen einfach öffentlich zugänglich sind. Anders als bei Datei-Freigaben scheint bei Kamerastreams noch nicht die nötige Awareness vorhanden zu sein — genau deshalb informiere ich hier und weise darauf hin.

Es ist nicht nur der RTSP-Stream, der sich häufig per UPnP seinen Weg nach draußen „tunnelt“. Oft werden auch per DNAT / Portfreigabe / Portweiterleitung die Webinterfaces der Kameras direkt aus dem Internet erreichbar gemacht. Im schlimmsten Fall kann man also mit dem Browser direkt auf Webinterface und Stream zugreifen. Viele sichern den Zugriff mit der kameraeigenen Anmeldung — das ist schon mal ein Anfang. Leider reicht das nicht immer: Bei manchen Modellen sind Funktionen wie Snapshots oder einzelne JPEG-Endpoints weiterhin ohne Anmeldung erreichbar. Das ist auf den ersten Blick nicht sichtbar — kennt man aber die entsprechende URL, genügt ein Browseraufruf und man sieht wieder alles.

Deshalb gebe ich immer den Rat: Zugriff lieber hinter ein VPN legen und niemals direkt offen ins Internet. Gebt jedem Gerät und jedem Dienst, den ihr aus dem Internet erreichbar macht, mindestens so viel Vertrauen wie eurer Haustür. Und prüft regelmäßig, ob dieses Vertrauen noch gerechtfertigt ist.

Wer selbst prüfen möchte, ob die EIGENE Kamera trotz eingerichteter Anmeldung noch irgendwie ohne Login zugänglich ist, kann mein kurzes Python-Tool nutzen: https://github.com/Kernel-Error/cam_probe

Denkt also bitte einmal darüber nach, ob ihr allem, was ihr direkt mit dem Internet verbunden habt, mindestens das gleiche Vertrauen entgegenbringt wie eurer Haustür oder Wohnungstür. Denkt an die security.txt und daran, dass, wenn sich jemand die Mühe macht, euch über ein solches Problem zu informieren, diese Person damit wahrscheinlich den größten Aufwand und auch das größte Risiko für sich selbst aufnimmt – nur, um euch auf ein Problem hinzuweisen.
Einen solchen Fund zu ignorieren, zu verkaufen oder sonst wie auszunutzen, ist deutlich einfacher, als den Betreiber zu informieren.

Natürlich gibt es auch hier schwarze Schafe, aber die Vertrauenswürdigkeit einer solchen Nachricht lässt sich meist schnell per Google oder auch ChatGPT prüfen.
Frage? Dann fragen. 🙂

GPT in Rspamd aktivieren: so nutze ich das LLM-Signal im Score

Setup: FreeBSD 14.3, Rspamd 3.12.1, Postfix + Dovecot. Ich lasse bei kniffligen Mails zusätzlich ein LLM draufschauen. Wichtig: GPT ist bei mir nur ein weiterer Sensor im ganz normalen Rspamd-Scoring — keine Allzweckwaffe und kein „hartes Urteil“.

Voraussetzungen

  • Rspamd inkl. GPT-Plugin (ab ~3.12.x im Paket; konfiguriert wird in local.d/gpt.conf).
  • API-Zugang (OpenAI-kompatibel oder eigener Endpunkt).
  • Grundverständnis zu Rspamd-Metrics/Actions (Reject/Add-Header/Greylist).

OpenAI API Key erstellen: Melde dich auf der Developer-Plattform an, öffne die Seite API Keys und klicke auf Create new secret key. Lege bei Bedarf Berechtigungen fest oder arbeite mit projektbasierten Keys. Kopiere den Key einmalig und bewahre ihn sicher (root-only) auf – bitte nicht teilen. Nutzung/Kosten siehst du im Usage-Dashboard.

Mein gpt.conf

Ich halte die Konfiguration bewusst nüchtern — genug, um robuste Labels zu bekommen, aber ohne Schnickschnack:

# local.d/gpt.conf (Auszug)
enabled = true;
type = "openai";
model = "gpt-4o-mini";
api_key = "GEHEIMER-KEY";

model_parameters {
  gpt-4o-mini {
    max_tokens = 160;
    temperature = 0.0;
  }
}

timeout = 10s;
allow_ham = true;
allow_passthrough = false;
json = false;
reason_header = "X-GPT-Reason";

input = "text";
min_words = 1;
max_size = 256k;

symbols_to_except {
  RCVD_IN_DNSWL_MED = -0.1;
  RCVD_IN_DNSWL_HI  = -0.1;
  DWL_DNSWL_MED     = -0.1;
  WHITELIST_RECP_ADDR = -0.1;
  GREYLIST = 0; GREYLIST_CHECK = 0; GREYLIST_SAVE = 0;
  RCPT_IN_SPAMTRAP = 0; SPAMTRAP = 0; SPAMTRAP_ADDR = 0;
  RCVD_VIA_SMTP_AUTH = 0; LOCAL_CLIENT = 0; FROM_LOCAL = 0;
}

Was bedeutet das?!

  • model = gpt-4o-mini: flott & günstig, deterministisch per temperature = 0.0.
  • allow_ham = true: GPT darf „HAM“ melden (kleines, positives Signal).
  • allow_passthrough = false: Bei Fehlern (Timeout/API down) keine stillen Freifahrten.
  • reason_header = "X-GPT-Reason": Kurzbegründung landet im Header (s.u. Datenschutz).
  • symbols_to_except: Offensichtliche interne Fälle werden neutralisiert, damit GPT nicht in klaren Situationen wirkt.
  • Limits: min_words = 1, max_size = 256k, timeout = 10s.

Metric/Scoring: drei GPT-Symbole

symbols {
  GPT_SPAM       { weight = 9.0;  group = "gpt"; description = "GPT: classified as SPAM"; }
  GPT_SUSPICIOUS { weight = 4.5;  group = "gpt"; description = "GPT: classified as SUSPICIOUS"; }
  GPT_HAM        { weight = -0.5; group = "gpt"; one_shot = true; description = "GPT: classified as HAM"; }
}

GPT wirkt wie ein starker, aber nicht absoluter Faktor.
SPAM (9.0): kräftiger Zuschlag.
SUSPICIOUS (4.5): sanfter Schubs Richtung Greylist/Review.
HAM (-0.5): kleine Entlastung, einmalig pro Mail.

Warum diese Gewichte?
Die Zahlen habe ich bewusst so gewählt, dass das GPT-Signal stark, aber nie absolut ist. Rspamd summiert Scores, GPT ist also nur ein Faktor:

  • GPT_SPAM = 9.0: genug, um bei Kombination mit klassischen Checks (Bayes, RBL, DMARC) die Add-Header-Schwelle sicher zu reißen, aber unterhalb von reject allein.
  • GPT_SUSPICIOUS = 4.5: halber Wert, schiebt Grauzonen in Richtung Greylist/Review, ohne sofortige Eskalation.
  • GPT_HAM = -0.5: nur eine kleine Entlastung (one_shot). So verhindert man, dass GPT-HAM mehrere Punkte abzieht und Spams „rettet“.

Wie wird die GPT-Gewichtung berechnet?
In den Logs/WebUI taucht das oft so auf: GPT_SPAM(2.10)[0.85]. Das bedeutet:

  • [0.85] = Rohwert von GPT, z. B. 85 % Wahrscheinlichkeit für Spam.
  • weight aus der Metric (z. B. 9.0 für GPT_SPAM).
  • Grundformel: Rohwert × weight → ergibt den Beitrag zum Gesamtscore.
  • Hinweis: Je nach Rspamd-Version kann der im Header gezeigte Wert zusätzlich skaliert sein (z. B. falls das Modell nur ein „softes“ Signal liefert). Deshalb sieht man in der Praxis häufig 2–8 Punkte statt des Maximalgewichts.

Actions/Schwellen

actions {
  greylist = 4;
  add_header = 6;
  reject = 15;
}

SUSPICIOUS (4.5) kippt oft in Greylist. SPAM (9.0) bringt fast immer Add-Header, Reject nur zusammen mit weiteren harten Befunden. Klassische Checks (SPF/DKIM/DMARC, RBL, Bayes) bleiben führend, GPT ergänzt nur.

Tuning
Zu bissig? Gewicht etwas senken.
Zu lasch? Gewicht erhöhen.
Zu optimistisch bei HAM? Gewicht kleiner machen oder 0 setzen.
Header mit X-GPT-Reason liefert Nachvollziehbarkeit, kann bei Bedarf wieder entfernt werden.

Praxis
– Symbole erscheinen im WebUI und Logfiles.
X-GPT-Reason erklärt im Header die Bewertung.
– Latenz/Kosten: gpt-4o-mini mit 160 Tokens und 10 s Timeout ist performant und günstig.

Jetzt schauen wir uns mal die Mailheader eines echten Beispiels an und wie GPT dort gegriffen hat:

X-Spamd-Result: default: False [8.59 / 15.00];
        VIOLATED_DIRECT_SPF(3.50)[];
        GPT_SPAM(2.10)[0.85];
        MISSING_MIMEOLE(2.00)[];
        CTYPE_MIXED_BOGUS(1.00)[];
        MID_RHS_NOT_FQDN(0.50)[];
        DMARC_POLICY_ALLOW_WITH_FAILURES(-0.50)[];
        MIME_HTML_ONLY(0.20)[];
        R_DKIM_ALLOW(-0.20)[thejewelbox.dd:s=1759374209.thejewelbox];
        ...

Erklärung:

  • X-Spamd-Result: [8.59 / 15.00] – Gesamtscore 8.59, Reject-Schwelle bei 15. Hier also kein Reject, sondern nur Add-Header.
  • GPT_SPAM(2.10)[0.85] – GPT meldet Spam mit 85 % Sicherheit ([0.85]). Daraus errechnet Rspamd den Beitrag ((…)), der in den Gesamtscore einfließt.
  • Die klassischen Checks wie VIOLATED_DIRECT_SPF(3.50) oder MISSING_MIMEOLE(2.00) haben ebenfalls beigetragen – GPT ist also nur ein Faktor im Gesamtbild.

Zusätzlich schreibt das GPT-Modul auf Wunsch auch eine kurze Begründung in den Mailheader:

X-GPT-Reason: This email is likely spam due to the urgency created around an unpaid invoice and the mismatch between the sender's domain and the company name.

Erklärung:

  • X-GPT-Reason – eigener Header, den du in gpt.conf mit reason_header = "X-GPT-Reason" aktivierst.
  • Der Text stammt direkt aus dem Modell und begründet die Einstufung (hier: Dringlichkeit „unpaid invoice“ + Domain/Company-Mismatch).
  • Nützlich für Analyse/Transparenz; kann auf MTA/MDA-Ebene wieder entfernt werden, wenn du ihn nicht bis zum Postfach durchreichen willst.

Ein Hinweis zum Datenschutz (gesamt)
Mit GPT-Integration gehen Mailinhalte an einen externen Dienst (z. B. OpenAI). Das kann datenschutzrechtlich relevant sein. Wer sensible oder personenbezogene Daten verarbeitet, sollte vorher prüfen, ob die Nutzung zulässig ist – oder alternativ ein selbst gehostetes, OpenAI-kompatibles Modell nutzen (z. B. Ollama). Den Reason-Header kannst du, falls nötig, serverseitig wieder entfernen.

DNS over TLS mit BIND, Stunnel und Android 9: Eigener DoT-Server​

Über die Techniken DoT (DNS over TLS) habe ich bereits im Zusammenhang mit Bind 9.16 geschrieben. Ebenfalls DoH (DNS over HTTPS) gibt es einen kleinen Beitrag.

Bilder der Bind 9 TLS Konfiguration

Zu diesem Zeitpunkt bracht BIND 9 die Unterstützung für DoH und DoT noch nicht selbst mit. Daher waren zu diesem Zeitpunkt noch Umwege über stunnel oder nginx zusammen mit doh-proxy nötig.

Zum Glück kommt die letzte stable Version 9.18.0 (26. Januar 2022) mit dem nötigen Support.

named now supports securing DNS traffic using Transport Layer Security (TLS). TLS is used by both DNS over TLS (DoT) and DNS over HTTPS (DoH).

Warum möchte man noch gleich DoH oder DoT benutzen? Ganz einfach… Über diese Techniken werden DNS Abfragen verschlüsselt übertragen. Dieses ist ein weiterer Schutz davor manipulierte Antworten zu bekommen und selbstverständlich, damit die eigenen DNS Abfragen erst überhaupt nicht mitgelesen werden. Denn wenn von einem Gerät im Netzwerk die DNS Abfrage zu z.B.: www.tagesschau.de kommt, könnte man davon bereits Dinge ableiten.

Wie die meisten Bind Konfigurationen ist dieses ebenfalls straightforward. Ab Version 9.18 bringt Bind alles Nötige mit. Da wir nun TLS mit dem Bind sprechen möchten, benötigen wir natürlich ein gültiges Zertifikat, wie z.B. beim nginx für seine Webseite.

Ebenfalls sollte man ein paar frische Diffie-Hellmann Parameter generieren:

openssl dhparam -out dhparam.pem 4096

Die eigentliche bind Konfiguration kann in der named.conf.options geschehen:

options {
        [...]
        listen-on port 853 tls local-tls { 37.120.183.220; };
        listen-on-v6 port 853 tls local-tls { 2a03:4000:38:20e::853; };
        listen-on port 443 tls local-tls http default { 37.120.183.220;  };
        listen-on-v6 port 443 tls local-tls http default { 2a03:4000:38:20e::853; };
        [...]
        allow-recursion-on { 127.0.0.0/8; ::1/128; 2a03:4000:38:20e::853; 37.120.183.220; };
        [...]
};

Da der bind auf weiteren Ports lauschen soll erweitert man diese für IPv4 und IPv6. Der Default Port für DoH ist dabei 443 und der default Port für DoT ist 853, beides TCP.

listen-on sowie listen-on-v6 sind wohl selbsterklärend.
port ist der TCP Port und erklärt sich ebenfalls.
tls sagt dem Bind das wir tls sprechen möchten.
local-tls verweißt auf den gleichnamigen tls Block über welchen man seine TLS Konfiguration vornimmt.
http ist für DoH.
default gibt den eigentlichen endpoint für die DoH Abfragen an, im default ist es /dns-query

Da der Server unsere DNS Abfragen erledigen soll, müssen wir ihm dieses noch per allow-recursion-on auf den jeweiligen Adressen erlauben.

Als nächstes wird die eigentliche TLS Terminierung konfiguriert (das lässt sich ebenfalls auslagern, wenn gewünscht). Dafür wird der folgende Block, außerhalb der Options Blocks, ergänzt:

tls local-tls {
    cert-file "/usr/local/etc/ssl/wild.kernel-error.de/2022/ecp/chain.crt";
    key-file "/usr/local/etc/ssl/wild.kernel-error.de/2022/ecp/http.key";
    dhparam-file "/usr/local/etc/ssl/dhparam.pem";
    protocols { TLSv1.2; TLSv1.3; };
    ciphers "TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-GCM-SHA256";
    prefer-server-ciphers yes;
    session-tickets no;
};

local-tls ist dabei der name des Blocks. Auf diesen verweisen wir oben.
cert-file ist der Pfad zum Zertifikat. Ich habe dort nicht nur das Zertifikat, sondern die gesamte Chain, also mit Intermediate und Root.
key-file ist der Pfad zum Key des Zertifikates.
dhparam-file ist der Pfad zu den Diffie-Hellman Parametern.
protocols definiert die zu verwendenden TLS Protokolle. In diesem Beispiel TLS1.2 sowie TLS1.3.
ciphers definiert die zu verwendenden cipher. Es soll ja „sicher“ bleiben.
prefer-server-ciphers übermittelt dem Client die Information, in welcher Reihenfolge protokoll/cipher Kombinationen probiert werden sollen um einen Match zu finden. Erst das vermeintlich sicherste und dann immer „schlechter“.
session-tickets regelt ob eine Wiederaufnahme von TLS Sessions erlaubt ist oder nicht. Da ich forward secrecy nutzen möchte, ist es deaktiviert.

Damit ist die Konfiguration schon abgeschlossen (Firewall ggf. nicht vergessen!). Also testen….

Ein einfaches Tool dafür ist dog, oder natürlich dig aus den bind-tools aber Version 9.18. Für bind gibt es dann die Optionen +https oder auch +tls

dig +https @dns.kernel-error.de www.kernel-error.de A
dig +tls @dns.kernel-error.de www.kernel-error.de A

Der gleiche Test mit dog, sieht wie folgt aus:

dog www.kernel-error.de --tls "@dns.kernel-error.de"
A www.kernel-error.de. 6h00m00s   148.251.40.23
dog www.kernel-error.de --https "@https://dns.kernel-error.de/dns-query"
A www.kernel-error.de. 6h00m00s   148.251.40.23

Das war es auch schon! Viele Spaß mit einem „besseren“ DNS und wenn es noch Fragen gibt, einfach fragen 🙂

FreeBSD und Netcup: Probleme mit IPv6 lösen

Als Kunden der bei netcup FreeBSD „rootserver“ auf KVM qemu Basis einsetzt, habe ich schnell gemerkt, dass meine IPv6 Verbindung nicht stabil ist.

Bild wie ein Dinosaurier ein Patchkabel durchbeißt, im Hintergrund ist das Buch IPv6 Workshop zu erkennen.

Dieses zeigt sich wie folgt:

– Direkt nach dem Boot scheinen IPv6 Verbindungen zu funktionieren, wie gewünscht.

– Nach einiger Zeit brechen die Verbindungen zusammen, sowohl Verbindungen vom System in die Welt als auch Verbindungen von der Welt ins System.

– Verbindungen scheinen „Startprobleme“ zu haben. Ein ping läuft erst ein paar Mal ins Leere und dann funktionieren alle Verbindungen plötzlich wieder für einen Moment.

Ein möglicher Workaround ist es, vom System aus einen ping auf die IPv6 Adresse des Gateways von netcup zu starten. Dieses sorgt in der Regel kurzzeitig für funktionsfähige IPv6 Verbindungen. Aber was ist das genaue Problem und wie könnte eine brauchbare Lösung aussehen?

Als Leser mit IPv6 Wissen, denkt man natürlich sofort a NDP das Neighbor Discovery Protocol und ja ich denke genau hier liegt das Problem. Dieses unterscheidet sich zur Implementation bei Linux etwas, daher funktioniert IPv6 im netcup Testsystem problemfrei unter FreeBSD, NetBSD usw. aber nicht. Die Probleme im NDP lassen sich auf dem System schnell wie folgt erkennen:

root@netcup-vps:~ # netstat -s -picmp6
icmp6:
    0 calls to icmp6_error
    0 errors not generated in response to an icmp6 message
    0 errors not generated because of rate limitation
    Output histogram:
        neighbor solicitation: 29
        neighbor advertisement: 10
        MLDv2 listener report: 8
    0 messages with bad code fields
    0 messages < minimum length
    0 bad checksums
    0 messages with bad length
    Input histogram:
        router advertisement: 17
        neighbor solicitation: 633
        neighbor advertisement: 25
    Histogram of error messages to be generated:
        0 no route
        0 administratively prohibited
        0 beyond scope
        0 address unreachable
        0 port unreachable
        0 packet too big
        0 time exceed transit
        0 time exceed reassembly
        0 erroneous header field
        0 unrecognized next header
        0 unrecognized option
        0 redirect
        0 unknown
    0 message responses generated
    0 messages with too many ND options
    0 messages with bad ND options
    423 bad neighbor solicitation messages
    0 bad neighbor advertisement messages
    0 bad router solicitation messages
    0 bad router advertisement messages
    0 bad redirect messages
    0 path MTU changes

Ich habe einige Zeit damit verbracht, mich mit dem Support darüber auszutauschen. Wie immer landet man zuerst in der human firewall, im Anschluss erreichte ich oft Supportmitarbeiter in Ausbildung eines IT Berufes. Zwischenzeitlich wurde mir das Problem von netcup dann auch bestätigt und mit dem Hinweis versehen, dass es an ihren Core-Routern liege, welche irgendwann ein Update bekommen sollen. Wann genau dieses Updates gemacht wird, konnte/wollte mir niemand bestätigen. Ebenfalls wurde versucht mein System auf verschiedene Hosts zu verschieben, von welchen andere Kunden wohl positives berichtet hatten. Dann sollte das Problem irgendwann behoben sein und netcup war erstaunt, dass es dieses noch nicht ist. Was auch immer… Aus meiner Sicht liegt das Problem an netcup.

Gelöst werden kann dadurch, dass man seinem BSD mitteilt, es soll bitte ND nach RFC4861 machen. Dieses ähnelt zumindest im Punkt der Bindung des jeweiligen ND ans Interface. Dafür kann man dieses als kurzen Test wie folgt aktivieren:

sysctl net.inet6.icmp6.nd6_onlink_ns_rfc4861=1

Stellt sich der gewünschte Erfolg ein, wird es mit dem passenden Eintrag in der /etc/sysctl.conf permanent aktiviert:

net.inet6.icmp6.nd6_onlink_ns_rfc4861=1

Dabei aber bitte beachten, dass FreeBSD dieses vor ca. 10 Jahren aus Sicherheitsgründen deaktiviert hat. https://www.freebsd.org/security/advisories/FreeBSD-SA-08:10.nd6.asc

Ich bin mit meinen Bemühungen aber leider nicht zu einer, für mich funktionierenden, Lösung von Seiten netcups gekommen. Daher blieb mir nur RFC4861.

Ich denke das Problem ist sicher schon lange beim Support bekannt, einfache google Suchen oder im netcup Forum zeigen dieses schnell auf. Dennoch vermittelte der Support mir erst das Gefühl, selbst etwas falsch konfiguriert zu haben, nur um mir dann den Eindruck zu vermitteln, dass sie noch nie von einem solchen Problem gehört haben. Ich vermute daher, dass ihr Setup aktuell einfach keine „einfache“ Lösung dieses Problems zulässt und sie daher so agieren. Was aber natürlich reine Spekulation ist, ich kann auch nur „vor“ das Setup schauen.

Fragen? Dann fragen…

MikroTik 4-Port 10-Gbit-SFP-Switch: Leistung für knapp 100 Euro

Ich habe einen neuen Switch. MikroTik CRS305-1G-4S+IN… Das Gerät verbindet bei mir zuhause im Arbeitszimmer meine Workstation, das Storage, meinen eigentlichen Switch und meinen Windows PC.


Das Teil ist der Knaller! Die angepriesene Leistung ist tatsächlich da, das Gerät kommt zwar nur mit einem Netzteil, man könnte aber ein weiteres anschließen. Ebenfalls kann man den Switch per PoE betrieben, somit hätte man im Grunde schon drei Netzteile als Ausfallsicherheit, wenn man es denn braucht. Das Gehäuse ist komplett aus Metall und dient zusätzlich zur passiven Kühlung. Es gibt also keinen Lüfter oder ähnliches, dass Geräusche machen könnte.

Unter dem Gehäuse sind noch Löcher, um es einfach an einer Wand oder ähnlichem befestigen zu können.

Wer MikroTik kennt, der fragt sich natürlich sofort: „Läuft da ein MikroTik OS drauf?“ JA tut es… Voll nutzbar und mit allem was man so gewohnt ist. Man könnte also noch über verschiedenste Dinge wir z.B.: VRRP die verrücktesten Failover Szenarien abbilden. Aber selbst, wenn nicht… 4 SFP+ Ports mit 10 GB/s für knapp über 100€, muss man da noch nachdenken?!?

Ich mache ja eher selten Werbung für ein Produkt aber den Switch wollt ihr haben. Als „Desktopswitch“ für zuhause (wie bei mir) ist der schon zu schade. Ich kann mir den gut als Pärchen vorstellen um klassische 1GB/s Switche zu verbinden oder ähnliche Dinge. Klickt euch den und testet ihn. Das Ding ist super: https://amzn.to/3r3kQiW

Windows Server 2012 R2 mit Exchange 2016: SSL Labs A-Rating erreichen

Qualis A+ Icon.

Ich habe hier einen Windows Server 2012 R2 mit einem Exchange 2016. Out of the Box spricht das Ding TLS 1.0, SSLv3 und RC4. Da gehen einem schnell die Haare hoch, oder?

Kann man so ein System auf ein A+ im Qualys Rating bekommen und es arbeitet dann noch? Kleiner Spoiler, ja geht!

Ich muss zugeben, Microsoft Produkte strengen mich in dieser Hinsicht immer sehr an. Auch wenn sie ganz sicher ihre Daseinsberechtigung haben.

Nun gut… Für ein A+ benötigen wir neben brauchbaren ciphern, sauberen Protokollen usw. noch HTTP Strict Transport Security (https://de.wikipedia.org/wiki/HTTP_Strict_Transport_Security). Dieses ist im Grunde nur ein http response header und dieses konfigurieren wir im IIS Manager. Das besagte Testsystem kümmert sich nur um den Exchangeserver, daher konfiguriere ich es ganz oben (so wird es überall hin vererbt).

IIS-Manager ==> HTTP-Antwortheader ==> Hinzufügen

Screenshot der Internetinformationsdienste (IIS)-Manager.

Name: strict-transport-security
Wert: max-age=31536000; includeSubdomains

Wie auch im Bild zu sehen.

Qualis A+ Wertung.

Jetzt der spannende Teil. Man muss einige Änderungen in der Registrierung vornehmen um MD5, RC4 usw. zu deaktivieren. Ich habe da etwas vorbereitet um dieses zu tun. Ebenfalls wird SSLv3, TLS 1.0, TLS 1.1 deaktiviert. TLS 1.2 und TLS 1.3  wird aktiviert (TLS 1.3 dabei nur für die Zukunft). Ebenfalls werden super schwache Cipher deaktiviert. Die bestmöglichen dafür aktiviert und es wird auch eine Cipherorder vorgegeben. Das File einfach herunterladen, ausführen und im Anschluss den Server durchstarten (Microsoft halt…).

Aber dann sollte man sein A+ haben. Auch wenn ich gerne noch schönere Cipher hätte :-/ aber mehr ging nicht, bzw. habe ich nicht hin bekommen!

Qualis Wertung mit Blick auf Cipher Suites und Protocols.

Oh natürlich… Das Registry Snippet zum Download:

Fragen? Dann fragen…

We have now run out of IPv4 addresses.

Wenn ich dann mal „zitieren“ darf..

Dear colleagues,

Today, at 15:35 UTC+1 on 25 November 2019, we made our final /22 IPv4 allocation from the last remaining addresses in our available pool. We have now run out of IPv4 addresses.

Our announcement will not come as a surprise for network operators - IPv4 run-out has long been anticipated and planned for by the RIPE community. In fact, it is due to the community's responsible stewardship of these resources that we have been able to provide many thousands of new networks in our service region with /22 allocations after we reached our last /8 in 2012.

----------------------------------------------------------------
Recovered IPv4 Addresses and the Waiting List
----------------------------------------------------------------

Even though we have run out, we will continue to recover IPv4 addresses in the future. These will come from organisations that have gone out of business or whose LIR accounts are closed, or from networks that return addresses they no longer need. They will be allocated to our members according to their position on a new waiting list that is now active.

While we therefore expect to be allocating IPv4 for some time, these small amounts will not come close to the many millions of addresses that networks in our region need today. Only LIRs that have never received an IPv4 allocation from the RIPE NCC (of any size) may request addresses from the waiting list, and they are only eligible to receive a single /24 allocation.

LIRs that have submitted an IPv4 request can see their position on the waiting list in the LIR Portal. A new graph has also been published that shows the number of requests on the waiting list and the number of days that the LIR at the front of the queue has been waiting:
https://www.ripe.net/manage-ips-and-asns/ipv4/ipv4-waiting-list

----------------------------------------------------------------
Call for Greater Progress on IPv6
----------------------------------------------------------------

This event is another step on the path towards global exhaustion of the remaining IPv4 addressing space. In recent years, we have seen the emergence of an IPv4 transfer market and greater use of Carrier Grade Network Address Translation (CGNAT) in our region. There are costs and trade-offs with both approaches and neither one solves the underlying problem, which is that there are not enough IPv4 addresses for everyone.

Without wide-scale IPv6 deployment, we risk heading into a future where the growth of our Internet is unnecessarily limited - not by a lack of skilled network engineers, technical equipment or investment, but by a shortage of unique network identifiers. There is still a long way to go, and we call on all stakeholders to play their role in supporting the IPv6 roll-out.

At the RIPE NCC, we are here to support our membership and the wider RIPE community in this work. Aside from allocating the IPv6 resources that will be required, we will continue to provide advice, training, measurements and tools to help network operators as they put their deployment plans into action.

We are optimistic and excited to see what the next chapter will bring. So let's get to work - and together, let's shape the future of the Internet.


Best regards,

Everyone at the RIPE NCC

Japp… RIPE NCC ist damit leer!

DoH (DNS over HTTPS) mit BIND auf eigenem Server

Meine Tests mit DoT (DNS over TLS) habe ich bereits vor einiger Zeit gestartet.  DoT DNS over TLS mit Bind, stunnel und Android 9 Dieses arbeitet noch immer ganz fein auf meinem Smartphone. DoT gefällt mir noch immer um einiges besser als DoH aber auch hier wollte ich nun einmal einen Versuch starten. Zusammen mit nginx und einem etwas angepassten doh-proxy läuft dieses nun auf dem gleichen System.

Im Firefox ist es schnell aktiviert https://ns1.kernel-error.de/dns-query…

DoH DNS over HTTPS Firefox

Es funktioniert auch, so richtig glücklich macht es mich aber nicht! Natürlich ist die Umsetzung nur etwas für einen kleinen privaten Test. „Schnell“ genug ist es ebenfalls! Zumindest zum Surfen im Internet, dennoch wäre mir eine saubere Implementierung von DoT im resolver vom OS viel lieber. So wie bereits ab Android 9 zu sehen. Vielleicht ändert sich mein Gefühl ja etwas zusammen mit QUIC (HTTP/3)?!?

DNS over TLS (DoT) mit BIND, Stunnel und Android 9 einrichten

Die eigenen DNS Anfragen über eine Verschlüsselte Verbindung an einen DNS Server zu schicken welchem man vertraut, dieses liest sich schon gut oder? Keiner verfolgt mein Surfverhalten und zusammen mit DNSSEC schiebt mir so schnell keiner falsche Records unter 🙂

Am ehesten vertraue ich meinem eigenen DNS Server (ns1.kernel-error.de). Auf diesem arbeitet ein Bind und vor diesen habe ich für DoT stunnel gestellt. Die Konfiguration vom stunnel sieht dabei grob wie folgt aus:

[dns4]
accept = 853
connect = 127.0.0.1:53
cert = /usr/local/etc/stunnel/ssl/dns.crt
key = /usr/local/etc/stunnel/ssl/dns.key
CAfile = /usr/local/etc/stunnel/ssl/ca.crt
ciphers = ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256
options = NO_SSLv2
options = NO_SSLv3
options = NO_TLSv1
options = NO_TLSv1.1
options = CIPHER_SERVER_PREFERENCE
options = DONT_INSERT_EMPTY_FRAGMENTS
renegotiation = no
TIMEOUTclose = 0

[dns6]
accept = 2a03:4000:38:20e::53:853 connect = ::1:53 cert = /usr/local/etc/stunnel/ssl/dns.crt key = /usr/local/etc/stunnel/ssl/dns.key CAfile = /usr/local/etc/stunnel/ssl/ca.crt ciphers = ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA256 options = NO_SSLv2 options = NO_SSLv3 options = NO_TLSv1 options = NO_TLSv1.1 options = CIPHER_SERVER_PREFERENCE options = DONT_INSERT_EMPTY_FRAGMENTS renegotiation = no 

Die TLS Konfiguration ergibt dabei nun folgendes Bild: https://tls.imirhil.fr/tls/ns1.kernel-error.de:853

Auf einem Android 9 Gerät kann ich also nun unter den Einstellungen ==> Netzwerk & Internet ==> Erweitert ==> Privates DNS meinen Nameserver eintragen.

Screenshot der Konfigurationseinstellungen für DoT auf einem Android 9.

Jetzt sieht mir keiner mehr beim meinen DNS Abfragen zu 😀

FreeBSD als IPsec/L2TP-Client für Microsoft Windows Routing und RAS VPN

FreeBSD IPsec L2TP Client to Microsoft Windows Routing RAS Server Diagramm.

Vor einigen Monaten habe ich meinen FreeBSD (damals noch 11 heute 12) Desktop an einen Microsoft Windows Routing und RAS VPN Server angebunden. Das eingesetzte VPN war ein IPsec L2TP. Heute schaffe ich es endlich das Thema mal wegzuschreiben. Grob gesehen ist dieses der Aufbau.

Der FreeBSD Desktop hat dabei die IPv4 Adresse 192.168.10.57, der Windows Routing RAS VPN Server hat den FQDN vpnserver.domain.tld mit der IPv4 88.88.88.88 und der IPsec Tunnel hat den Namen vpnname. Die Netze im Unternehmen sind 172.16.0.0/12 und 10.0.0.0/8.

Tunneltyp ist ein IPsec L2TP an dem Windows „Ding“ mit PSK für den IPsec Tunnel und normaler Dämenenanmeldung über L2TP.

Auf meinem FreeBSD Desktop brauche ich also ipsec für den Tunnel und ich nutze mpd5 für L2TP. Ich „glaube“ l2tpd wäre vielleicht etwas besser, da mpd5 etwas manuelle Arbeit benötigt. Da ich an ein paar anderen Stellen ebenfalls mpd5 nutze und hier ohne Windows auch keine Handarbeit mehr nötig ist…. Es geht mir halt leichter von der Hand 🙂 Insg. ist die gesamte Konfiguration aber sehr einfach.

Meine ipsec Konfiguration sie wie folgt aus:

/usr/local/etc/ipsec.conf

# ipsec.conf - strongSwan IPsec configuration file

# basic configuration

#config setup
	# strictcrlpolicy=yes
	# uniqueids = no

# Add connections here.

# Sample VPN connections

#conn sample-self-signed
#      leftsubnet=10.1.0.0/16
#      leftcert=selfCert.der
#      leftsendcert=never
#      right=192.168.0.2
#      rightsubnet=10.2.0.0/16
#      rightcert=peerCert.der
#      auto=start

#conn sample-with-ca-cert
#      leftsubnet=10.1.0.0/16
#      leftcert=myCert.pem
#      right=192.168.0.2
#      rightsubnet=10.2.0.0/16
#      rightid="C=CH, O=Linux strongSwan CN=peer name"
#      auto=start

config setup

conn %default
        ikelifetime=60m
        keylife=20m
        rekeymargin=3m
        keyingtries=1
        keyexchange=ikev1
        authby=psk

conn vpnname
        type=transport
        leftfirewall=yes
        right=vpnserver.domain.tld
        rightid = %any
        rightsubnet=0.0.0.0/0
        auto=add
        left=%defaultroute
        leftprotoport=17/%any
        rightprotoport=17/1701
        ike=3des-sha1-modp1024!
        esp=3des-sha1
        modeconfig=push

Der PSK steht in der /usr/local/etc/ipsec.secrets

# ipsec.secrets - strongSwan IPsec secrets file
vpnserver.domain.tld %any : PSK "abcdefg1234567"

Den IPsec Tunnel baut man nun einfach wie folgt auf:

root@errortest:~ # ipsec up vpnname
initiating Main Mode IKE_SA vpnname[20] to 88.88.88.88
generating ID_PROT request 0 [ SA V V V V V ]
sending packet: from 192.168.10.57[500] to 88.88.88.88[500] (176 bytes)
received packet: from 88.88.88.88[500] to 192.168.10.57[500] (208 bytes)
parsed ID_PROT response 0 [ SA V V V V V V ]
received MS NT5 ISAKMPOAKLEY vendor ID
received NAT-T (RFC 3947) vendor ID
received draft-ietf-ipsec-nat-t-ike-02\n vendor ID
received FRAGMENTATION vendor ID
received unknown vendor ID: fb:1d:e3:cd:f3:41:b7:ea:16:b7:e5:be:08:55:f1:20
received unknown vendor ID: e3:a5:96:6a:76:37:9f:e7:07:22:82:31:e5:ce:86:52
selected proposal: IKE:3DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024
generating ID_PROT request 0 [ KE No NAT-D NAT-D ]
sending packet: from 192.168.10.57[500] to 88.88.88.88[500] (244 bytes)
received packet: from 88.88.88.88[500] to 192.168.10.57[500] (260 bytes)
parsed ID_PROT response 0 [ KE No NAT-D NAT-D ]
local host is behind NAT, sending keep alives
generating ID_PROT request 0 [ ID HASH ]
sending packet: from 192.168.10.57[4500] to 88.88.88.88[4500] (68 bytes)
received packet: from 88.88.88.88[4500] to 192.168.10.57[4500] (68 bytes)
parsed ID_PROT response 0 [ ID HASH ]
IKE_SA vpnname[20] established between 192.168.10.57[192.168.10.57]...88.88.88.88[88.88.88.88]
scheduling reauthentication in 3402s
maximum IKE_SA lifetime 3582s
generating QUICK_MODE request 2082742542 [ HASH SA No ID ID NAT-OA NAT-OA ]
sending packet: from 192.168.10.57[4500] to 88.88.88.88[4500] (220 bytes)
received packet: from 88.88.88.88[4500] to 192.168.10.57[4500] (212 bytes)
parsed QUICK_MODE response 2082742542 [ HASH SA No ID ID NAT-OA NAT-OA ]
selected proposal: ESP:3DES_CBC/HMAC_SHA1_96/NO_EXT_SEQ
CHILD_SA vpnname{38} established with SPIs c387d93f_i 4720cab6_o and TS 192.168.10.57/32[udp] === 88.88.88.88/32[udp/l2f]
connection 'vpnname' established successfully

Ob der IPsec Tunnel steht sieht man mit:

root@errortest:~ # ipsec statusall
Status of IKE charon daemon (strongSwan 5.7.1, FreeBSD 12.0-RELEASE-p3, amd64):
  uptime: 12 hours, since Apr 03 21:26:07 2019
  worker threads: 11 of 16 idle, 5/0/0/0 working, job queue: 0/0/0/0, scheduled: 5
  loaded plugins: charon aes des blowfish rc2 sha2 sha1 md4 md5 random nonce x509 revocation constraints pubkey pkcs1 pkcs7 pkcs8 pkcs12 pgp dnskey sshkey pem openssl fips-prf curve25519 xcbc cmac hmac curl attr kernel-pfkey kernel-pfroute resolve socket-default stroke vici updown eap-identity eap-md5 eap-mschapv2 eap-tls eap-ttls eap-peap xauth-generic whitelist addrblock counters
Listening IP addresses:
  2003:88:53dd:a800:eef4:bbff:fe47:c54c
  fd00::eef4:bbff:fe47:c54c
  192.168.10.57
Connections:
      vpnname:  %any...vpnserver.domain.tld  IKEv1
      vpnname:   local:  [192.168.10.57] uses pre-shared key authentication
      vpnname:   remote: uses pre-shared key authentication
      vpnname:   child:  dynamic[udp] === 0.0.0.0/0[udp/l2f] TRANSPORT
Security Associations (1 up, 0 connecting):
      vpnname[20]: ESTABLISHED 14 seconds ago, 192.168.10.57[192.168.10.57]...88.88.88.88[88.88.88.88]
      vpnname[20]: IKEv1 SPIs: 8d3cfef7264b42cc_i* 0d322a1593a9db84_r, pre-shared key reauthentication in 56 minutes
      vpnname[20]: IKE proposal: 3DES_CBC/HMAC_SHA1_96/PRF_HMAC_SHA1/MODP_1024
      vpnname{38}:  INSTALLED, TRANSPORT, reqid 10, ESP in UDP SPIs: c387d93f_i 4720cab6_o
      vpnname{38}:  3DES_CBC/HMAC_SHA1_96, 0 bytes_i, 0 bytes_o, rekeying in 14 minutes
      vpnname{38}:   192.168.10.57/32[udp] === 88.88.88.88/32[udp/l2f]

Jetzt fehlt also nur noch L2TP, meine mpd5 Konfiguration sieht dabei so aus /usr/local/etc/mpd5/mpd.conf :

startup:
      # Set web self 127.0.0.1 5008
      # Set user vpntest vpntest admin
      # Set web open
log +ALL +EVENTS -FRAME -ECHO
default:
      load L2TP_client

L2TP_client:
    create bundle static B1
	set iface up-script /home/kernel/vpnname-up.sh
	set iface down-script /home/kernel/vpnname-down.sh
	set bundle enable crypt-reqd
	set bundle enable compression
	set bundle enable ipv6cp
	set ccp yes mppc
	set mppc no e40 e56
	set mppc yes e128 stateless
	set ipcp ranges 0.0.0.0/0 0.0.0.0/0
	set ipcp enable req-pri-dns
	set ipcp enable req-sec-dns
	set iface route 172.16.0.0/12
	set iface route 10.0.0.0/8
	set iface enable tcpmssfix



    create link static L1 l2tp
    set link action bundle B1
    set auth authname "AD-USERNAME"
    set auth password "AD-PASSWORD"
    set link max-redial 0
    set link mtu 1400
    set link keep-alive 20 75
    set link accept chap-msv2
	set link no pap eap


    set l2tp peer vpnserver.domain.tld
    open

Einfach starten mit:

root@errortest:/ # mpd5
Multi-link PPP daemon for FreeBSD

process 10142 started, version 5.8 (root@120amd64-quarterly-job-15 02:54  8-Feb-2019)
[B1] Bundle: Interface ng0 created
[L1] [L1] Link: OPEN event
[L1] LCP: Open event
[L1] LCP: state change Initial --> Starting
[L1] LCP: LayerStart
L2TP: Initiating control connection 0x800caa310 0.0.0.0 0 <-> 88.88.88.88 1701
L2TP: Control connection 0x800caa310 192.168.10.57 38844 <-> 88.88.88.88 1701 connected
[L1] L2TP: Incoming call #7540000 via control connection 0x800caa310 initiated
[L1] L2TP: Call #7540000 connected
[L1] Link: UP event
[L1] LCP: Up event
[L1] LCP: state change Starting --> Req-Sent
[L1] LCP: SendConfigReq #1
[L1]   ACFCOMP
[L1]   PROTOCOMP
[L1]   MRU 1500
[L1]   MAGICNUM 0x2d8654b6
[L1] LCP: SendConfigReq #2
[L1]   ACFCOMP
[L1]   PROTOCOMP
[L1]   MRU 1500
[L1]   MAGICNUM 0x2d8654b6
[L1] LCP: rec'd Configure Request #0 (Req-Sent)
[L1]   MRU 1400
[L1]   AUTHPROTO EAP
[L1]   MAGICNUM 0x74943399
[L1]   PROTOCOMP
[L1]   ACFCOMP
[L1]   CALLBACK 6
[L1]   MP MRRU 1614
[L1]   ENDPOINTDISC [LOCAL] 01 d0 15 a9 b4 71 4f f4 a0 97 8e 3c e4 ef 93 d7 00 00 0
[L1] LCP: SendConfigRej #0
[L1]   CALLBACK 6
[L1]   MP MRRU 1614
[L1] LCP: rec'd Configure Ack #2 (Req-Sent)
[L1]   ACFCOMP
[L1]   PROTOCOMP
[L1]   MRU 1500
[L1]   MAGICNUM 0x2d8654b6
[L1] LCP: state change Req-Sent --> Ack-Rcvd
[L1] LCP: rec'd Configure Request #1 (Ack-Rcvd)
[L1]   MRU 1400
[L1]   AUTHPROTO EAP
[L1]   MAGICNUM 0x74943399
[L1]   PROTOCOMP
[L1]   ACFCOMP
[L1]   ENDPOINTDISC [LOCAL] 01 d0 15 a9 b4 71 4f f4 a0 97 8e 3c e4 ef 93 d7 00 00 0
[L1] LCP: SendConfigNak #1
[L1]   AUTHPROTO CHAP MSOFTv2
[L1] LCP: rec'd Configure Request #2 (Ack-Rcvd)
[L1]   MRU 1400
[L1]   AUTHPROTO CHAP MSOFTv2
[L1]   MAGICNUM 0x74943399
[L1]   PROTOCOMP
[L1]   ACFCOMP
[L1]   ENDPOINTDISC [LOCAL] 01 d0 15 a9 b4 71 4f f4 a0 97 8e 3c e4 ef 93 d7 00 00 0
[L1] LCP: SendConfigAck #2
[L1]   MRU 1400
[L1]   AUTHPROTO CHAP MSOFTv2
[L1]   MAGICNUM 0x74943399
[L1]   PROTOCOMP
[L1]   ACFCOMP
[L1]   ENDPOINTDISC [LOCAL] 01 d0 15 a9 b4 71 4f f4 a0 97 8e 3c e4 ef 93 d7 00 00 0
[L1] LCP: state change Ack-Rcvd --> Opened
[L1] LCP: auth: peer wants CHAP, I want nothing
[L1] LCP: LayerUp
[L1] CHAP: rec'd CHALLENGE #0 len: 26
[L1]   Name: "VPN-SERVER"
[L1] CHAP: Using authname "AD-USERNAME"
[L1] CHAP: sending RESPONSE #0 len: 60
[L1] CHAP: rec'd SUCCESS #0 len: 46
[L1]   MESG: S=39CCB87E756B7996C5A261EEC4CA14D30E4616E0
[L1] LCP: authorization successful
[L1] Link: Matched action 'bundle "B1" ""'
[L1] Link: Join bundle "B1"
[B1] Bundle: Status update: up 1 link, total bandwidth 64000 bps
[B1] IPCP: Open event
[B1] IPCP: state change Initial --> Starting
[B1] IPCP: LayerStart
[B1] IPV6CP: Open event
[B1] IPV6CP: state change Initial --> Starting
[B1] IPV6CP: LayerStart
[B1] CCP: Open event
[B1] CCP: state change Initial --> Starting
[B1] CCP: LayerStart
[B1] IPCP: Up event
[B1] IPCP: state change Starting --> Req-Sent
[B1] IPCP: SendConfigReq #1
[B1]   IPADDR 0.0.0.0
[B1]   COMPPROTO VJCOMP, 16 comp. channels, no comp-cid
[B1]   PRIDNS 0.0.0.0
[B1]   SECDNS 0.0.0.0
[B1] IPV6CP: Up event
[B1] IPV6CP: state change Starting --> Req-Sent
[B1] IPV6CP: SendConfigReq #1
[B1] CCP: Up event
[B1] CCP: state change Starting --> Req-Sent
[B1] CCP: SendConfigReq #1
[B1]   MPPC
[B1]     0x01000040:MPPE(128 bits), stateless
[B1] IPV6CP: rec'd Configure Request #4 (Req-Sent)
[B1] IPV6CP: SendConfigAck #4
[B1] IPV6CP: state change Req-Sent --> Ack-Sent
[B1] CCP: rec'd Configure Request #5 (Req-Sent)
[B1]   MPPC
[B1]     0x01000001:MPPC, stateless
[B1] CCP: SendConfigNak #5
[B1]   MPPC
[B1]     0x01000040:MPPE(128 bits), stateless
[B1] IPCP: rec'd Configure Request #6 (Req-Sent)
[B1]   IPADDR 10.16.100.13
[B1]     10.16.100.13 is OK
[B1] IPCP: SendConfigAck #6
[B1]   IPADDR 10.16.100.13
[B1] IPCP: state change Req-Sent --> Ack-Sent
[B1] IPCP: rec'd Configure Reject #1 (Ack-Sent)
[B1]   COMPPROTO VJCOMP, 16 comp. channels, no comp-cid
[B1] IPCP: SendConfigReq #2
[B1]   IPADDR 0.0.0.0
[B1]   PRIDNS 0.0.0.0
[B1]   SECDNS 0.0.0.0
[B1] IPV6CP: rec'd Configure Ack #1 (Ack-Sent)
[B1] IPV6CP: state change Ack-Sent --> Opened
[B1] IPV6CP: LayerUp
[B1]   eef4:bbff:fe47:c54c -> e467:e46a:5b1f:dfc1
[B1] IFACE: Up event
[B1] CCP: rec'd Configure Ack #1 (Req-Sent)
[B1]   MPPC
[B1]     0x01000040:MPPE(128 bits), stateless
[B1] CCP: state change Req-Sent --> Ack-Rcvd
[B1] CCP: rec'd Configure Request #7 (Ack-Rcvd)
[B1]   MPPC
[B1]     0x01000040:MPPE(128 bits), stateless
[B1] CCP: SendConfigAck #7
[B1]   MPPC
[B1]     0x01000040:MPPE(128 bits), stateless
[B1] CCP: state change Ack-Rcvd --> Opened
[B1] CCP: LayerUp
[B1] CCP: Compress using: mppc (MPPE(128 bits), stateless)
[B1] CCP: Decompress using: mppc (MPPE(128 bits), stateless)
[B1] IPCP: rec'd Configure Nak #2 (Ack-Sent)
[B1]   IPADDR 10.16.100.34
[B1]     10.16.100.34 is OK
[B1]   PRIDNS 10.16.0.53
[B1]   SECDNS 10.16.0.52
[B1] IPCP: SendConfigReq #3
[B1]   IPADDR 10.16.100.34
[B1]   PRIDNS 10.16.0.53
[B1]   SECDNS 10.16.0.52
[B1] IPCP: rec'd Configure Ack #3 (Ack-Sent)
[B1]   IPADDR 10.16.100.34
[B1]   PRIDNS 10.16.0.53
[B1]   SECDNS 10.16.0.52
[B1] IPCP: state change Ack-Sent --> Opened
[B1] IPCP: LayerUp
[B1]   10.16.100.34 -> 10.16.100.13

Ob alles steht sieht man ebenfalls mit ifconfig :

ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> metric 0 mtu 1396
	inet6 fe80::eef4:bbff:fe47:c54c%ng0 prefixlen 64 scopeid 0x3
	inet 10.16.100.34 --> 10.16.100.13 netmask 0xffffffff
	nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

Damit sollte auch schon der Tunnel stehen.

Der Windows VPN Server übermittelt zwar eigentlich die Routen, DNS Server usw., dieses nimmt der mpd5 aber nicht alles gut an. Das meinte ich mit manueller Handarbeit. Sicher nichts für die Masse aber wenn man als Admin „ran“ möchte sicher kein größeres Problem. set ccp yes mppc activiert hierbei die MPPC Komprimierung und Verschlüsselung. set mppc yes e128 stateless ist dabei für die Zusammenarbeit mit dem Windows Server wichtig, denn e128 / stateless ermöglicht als einzige Option die Zusammenarbeit mit MS-CHAPv2 (was hier zum Einsatz kommt). Per IPCP frage ich zwar die Konfiguration wie die ersten beiden DNS-Server ab ( set ipcp enable req-pri-dns / set ipcp enable req-sec-dns ), aktuell mache ich aber damit nichts. Diese Werte werden automatisch mit an die iface up-scripte/down-scripte übermittelt und könnten dort mitbenutzt werden, da ich nur eine solche Verbindung habe und die DNS Konfiguration kenne, nutze die die up/down-scripte nur um die jeweilige /etc/resolv.conf zu kopieren.

Mit den Routen ist es ähnlich, ich kenne die Routen und kann sie also einfach mitgeben: set iface route 172.16.0.0/12 / set iface route 10.0.0.0/8 diese Liste kann nach Belieben eingepasst werden.

Wie gesagt, alles sehr einfach und überschaubar.

Ich starte IPsec und in folge mpd5 meist von Hand, wenn ich es mal brauche, man kann aber auch alles per Dienst starten lassen oder sich irgendeinen Startknopf bauen.

Fragen? Dann fragen!

« Ältere Beiträge

© 2025 -=Kernel-Error=-

Theme von Anders NorénHoch ↑